A Radial Basis Neural Network Based Agent Module Exploiting ECG Signals to Prevent Heart Diseases

نویسندگان

  • Salvatore Calcagno
  • Fabio La Foresta
چکیده

Today, Electro-Cardiogram (ECG) is considered the most important diagnostic tool in cardiology, because its extremely accuracy to reveal potential pathologic heart activities. In the context of a multi-agent system, where agents provide to monitor the health of patients in a personalized manner on the bases of different embedded modules, we propose a module developed with the aim to prevent possible hearth diseases. It is based on a Radial Basis Neural Network (RBNN) able to analyze the ECG signals and to evaluate the impact of some specific parameters for preventing heart diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

A comprehensive model using modified Zeeman model for generating ECG signals

Developing a mathematical model for the artificial generation of electrocardiogram (ECG) signals is a subject that has been widely investigated. One of its uses is for the assessment of diagnostic ECG signal processing devices. So the model should have the capability of producing a wide range of ECG signals, with all the nuances that reflect the sickness to which humans are prone, and this ...

متن کامل

An Efficient Technique for Classification of Electrocardiogram Signals

This work describes a Radial Basis Function (RBF) neural network method used to analyze ECG signals for diagnosing cardiac arrhythmias effectively. The proposed method can accurately classify and differentiate normal (Normal) and abnormal heartbeats. Abnormal heartbeats include left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature contractions (APC) and premature v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017